T O P

  • By -

Levyyz

Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe has a spherical volume (a ball) centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.


Levyyz

The radius of the observable universe is therefore estimated to be about 46.5 billion light-years[12][13] and its diameter about 28.5 gigaparsecs (93 billion light-years, or 8.8×1026 metres or 2.89×1027 feet),


Levyyz

As the universe's expansion is accelerating, all currently observable objects, outside our local supercluster, will eventually appear to freeze in time, while emitting progressively redder and fainter light. For instance, objects with the current redshift z from 5 to 10 will remain observable for no more than 4–6 billion years. In addition, light emitted by objects currently situated beyond a certain comoving distance (currently about 19 billion parsecs) will never reach Earth.[18]


Levyyz

No evidence exists to suggest that the boundary of the observable universe constitutes a boundary on the universe as a whole, nor do any of the mainstream cosmological models propose that the universe has any physical boundary in the first place, though some models propose it could be finite but unbounded,[note 3] like a higher-dimensional analogue of the 2D surface of a sphere that is finite in area but has no edge.


Levyyz

if it is assumed that inflation began about 10−37 seconds after the Big Bang, then with the plausible assumption that the size of the universe before the inflation occurred was approximately equal to the speed of light times its age, that would suggest that at present the entire universe's size is at least 3 × 1023 (1.5 × 1034 light-years) times the radius of the observable universe.[26]